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Software Defined
Radio

GNU Radio and the
USRP
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Overview

 What is Software Defined Radio?

 Advantages of Software Defined Radio

 Traditional versus SDR Receivers

 SDR and the USRP

 Using GNU Radio
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Introduction
 What is Software Defined Radio (SDR)?

 Getting code as close to the antenna as possible
 Replacing hardware with software for

modulation/demodulation
 Advantages:

 Makes communications systems reconfigurable
(adapting to new standards)

 Flexible (universal software device - not special
purpose)

 Filters/Other Hardware
 Cognitive Radio
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Traditional vs. SDR Receiver
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SDR Receiver Using the USRP
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USRP:  Universal Software Radio Peripheral
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Quadrature Signal
Representation

The received signal, S(t), may be represented as follows:

S(t) = I(t)cos(2! fct) +Q(t)sin(2! fct)

fc = carrier frequency

I(t)  =  in-phase component

Q(t) = quadrature component

Contain amplitude
and phase
information of
baseband signal

•GNU Radio software  uses I and Q components to
demodulate signals
•USRP front end translates the signal to zero frequency
and extracts I and Q

a
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Extracting I(t) from S

S(t) = I(t)cos(2! fct) +Q(t)sin(2! fct)

S(t)cos(2! fct) = I(t)cos
2
(2! fct) +Q(t)sin(2! fct)cos(2! fct)

=
I(t)

2
1+ cos(4! fct)[ ] +

Q(t)

2
sin(4! fct) + sin(0)[ ]

=
1

2
I(t) +

1

2
I(t)cos(4! fct) + +

1

2
Q(t)sin(4! fct)

Multiplying both sides by cos(2πfct):

Applying this signal to a low pass filter, the output will be:
1

2
I(t)
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Extracting Q(t) from S

S(t) = I(t)cos(2! fct) +Q(t)sin(2! fct)

S(t)sin(2! fct) = I(t)cos(2! fct)sin(2! fct) +Q(t)sin
2
(2! fct)

=
I(t)

2
sin(4! fct) " sin(0)[ ] +

Q(t)

2
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=
1

2
I(t)sin(4! fct) +
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2
Q(t) "

1

2
Q(t)cos(4! fct)

Multiplying both sides by sin(2πfct):

Applying this signal to a low pass filter, the output will be:
1

2
Q(t)
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USRP Receiver Front End
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Analog to Digital Converter
(ADC)
 12 bit A/D Converter (212 levels)
 2 volt peak-peak maximum input
 64 Msamp/second

ADC

∆t

!t =
1

64 "10
6
= 0.0156µS !v =

2

2
12
= 0.488mV

Quantization Levels:Sampling Interval:
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Decimation
 Original sampling rate is 64Msamp/sec
 Converts a portion of spectrum 32 MHz wide
 Generally we are interested is a narrower portion of the

spectrum requiring a lower sampling rate
 USB cannot handle that high data rate
 Occurs in the FPGA of the USRP

a

f
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LPF
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SDR Receiver with USRP
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USRP -
Motherboard/Daughterboard

15

GNU Radio Software
 Community-based project started in 1998
 GNU Radio application consists of sources (inputs), sinks

(outputs) and transform blocks
 Transform blocks:  math, filtering,

modulation/demodulation, coding, etc.
 Sources:  USRP, audio input, file input, signal generator,

…
 Sinks:  USRP, audio output, file output, FFT, oscilloscope,

…
 Blocks written in C++
 Python scripts used to connect blocks and form application
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Design of a Receiver

 USRP:  Set frequency of local oscillator (receive
frequency), gain of amplifier, decimation factor

 GNU Radio application:  use Python to specify
and connect blocks that perform demodulation
and decoding

USRP GNU Radio Application
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Example:  400 - 500 MHz NBFM
Receiver
 Problem:  Receive an audio signal (up to 4

KHz) transmitted at 446 MHz using
narrowband FM (NBFM) with a 16 KHz
transmission bandwidth

USRP GNU Radio Application

a

f (MHz)
400 500446

16 KHz

a

f
4KHz
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Design Procedure

1. Plan the block diagram of system
components

2. Determine block parameters
3. Determine decimation rates
4. Write Python script to specify the blocks

and connect them together
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NBFM Receiver:  Block
Diagram/Parameters
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Determining the Decimation
Factors

64Msamp/sec 8Ksamp/sec

Total Decimation factor = 8000 = D1D2D3
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FPGA Decimation Factor, D1

•Total Decimation factor = 8000 = D1D2D3

•Maximize the decimation in FPGA

•Maximum decimation factor in FPGA = 256

•Select D1 = 250 (factor of 8000)

•Output sample rate = 64Ms/s / 250 = 256Ks/s
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Channel Filter Specification

•Maximum frequency = 16 KHz       Reduce sample rate to 32 Ks/s

•256Ks/s  /  32Ks/s         D2 = 8
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FM Demodulator

•Maximum frequency = 4 KHz       Reduce sample rate to 8 Ks/s

•32Ks/s  /  8Ks/s         D3 = 4

•FM Demodulator block “extracts” audio signal from FM waveform by

operating on I and Q
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Complete Application Design

•Total decimation ratio = 250*8*4 = 8000

•Problem:  The audio card requires an input sample rate ≥ 44.1 Ks/s

•Solution:  Use a Resampler to increase the output sample rate
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Final Application Design

•Audio Card requires a sample rate ≥ 44.1 Ks/sec.  Use 48 Ks/sec.

•Modify FM Demodulator to have a decimation factor of 1 (no change)

•Increase the sample rate to 48 Ks/sec with Resampler (x 3/2)

a
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Implementing the Design
 Create a Python script to specify and

connect the various GNU radio blocks
 Blocks are already written in C++
 USRP parameters are set within Python

script
 # indicates that the line is a comment
 Refer to nbfm.py script
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Setting the USRP Parameters
 The following code sets the USRP

Parameters:
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Channel Filter Design

 The following code specifies the channel
filter and computes the coefficients
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Channel Filter Creation
 The following code creates the channel filter

using the coefficients computed:
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FM Demodulator
 The following code creates the FM demodulator.
 The demodulator block also includes a low pass

filter.
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Resampler
 The following code creates the resampler.
 The resampler decimates and/or interpolates the

data to adjust the sample rate.
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Connecting the Blocks

 The following code connects the blocks:

Or, a single connect statement:
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Final Thoughts

 Demonstration
 Storing/creating data
 Transmitters
 Installing GNU radio
 Questions
 Where do we go from here?


