
1

Software Defined
Radio

GNU Radio and the
USRP

2

Overview

 What is Software Defined Radio?

 Advantages of Software Defined Radio

 Traditional versus SDR Receivers

 SDR and the USRP

 Using GNU Radio

3

Introduction
 What is Software Defined Radio (SDR)?

 Getting code as close to the antenna as possible
 Replacing hardware with software for

modulation/demodulation
 Advantages:

 Makes communications systems reconfigurable
(adapting to new standards)

 Flexible (universal software device - not special
purpose)

 Filters/Other Hardware
 Cognitive Radio

2

4

Traditional Receiver

Local
Oscillator

RF
Amplifier

IF
Amplifier

x Demod-
ulator

fc

fLO

|fLO-fc|
fLO+fc

f (KHz)
530 1700980

10 KHz

f (KHz)
530 1700980

10 KHz
f (KHz)

455

10 KHz

fLO=1435 KHz

455
f (KHz)

10 KHz
f (KHz)

5

5

Traditional vs. SDR Receiver

RF
Amplifier

IF
Amplifier

x Demod-
ulator

Local
Oscillator

Receiver Front End

Traditional
/ Hardware
Receiver

SoftwareReceiver Front End ADC
Current
SDR
Receiver

SoftwareADC

Future
SDR
Receiver ?

6

SDR Receiver Using the USRP

Receiver
Front End ADC USB

Controller
FPGA PC

Daughterboard Motherboard

similar to traditional
front end with fIF = 0

Decimation,
MUX, +

Interface to PC

GNU Radio
software

USRP: Universal Software Radio Peripheral

3

7

Quadrature Signal
Representation

The received signal, S(t), may be represented as follows:

S(t) = I(t)cos(2! fct) +Q(t)sin(2! fct)

fc = carrier frequency

I(t) = in-phase component

Q(t) = quadrature component

Contain amplitude
and phase
information of
baseband signal

•GNU Radio software uses I and Q components to
demodulate signals
•USRP front end translates the signal to zero frequency
and extracts I and Q

a

f (MHz)446

16 KHz

8

Extracting I(t) from S

S(t) = I(t)cos(2! fct) +Q(t)sin(2! fct)

S(t)cos(2! fct) = I(t)cos
2
(2! fct) +Q(t)sin(2! fct)cos(2! fct)

=
I(t)

2
1+ cos(4! fct)[] +

Q(t)

2
sin(4! fct) + sin(0)[]

=
1

2
I(t) +

1

2
I(t)cos(4! fct) + +

1

2
Q(t)sin(4! fct)

Multiplying both sides by cos(2πfct):

Applying this signal to a low pass filter, the output will be:
1

2
I(t)

9

Extracting Q(t) from S

S(t) = I(t)cos(2! fct) +Q(t)sin(2! fct)

S(t)sin(2! fct) = I(t)cos(2! fct)sin(2! fct) +Q(t)sin
2
(2! fct)

=
I(t)

2
sin(4! fct) " sin(0)[] +

Q(t)

2
1" cos(4! fct)[]

=
1

2
I(t)sin(4! fct) +

1

2
Q(t) "

1

2
Q(t)cos(4! fct)

Multiplying both sides by sin(2πfct):

Applying this signal to a low pass filter, the output will be:
1

2
Q(t)

4

10

USRP Receiver Front End

RF
Amplifier

x LPF

90°

x LPF

LO
fc

I

Q

11

Analog to Digital Converter
(ADC)
 12 bit A/D Converter (212 levels)
 2 volt peak-peak maximum input
 64 Msamp/second

ADC

∆t

!t =
1

64 "10
6
= 0.0156µS !v =

2

2
12
= 0.488mV

Quantization Levels:Sampling Interval:

12

Decimation
 Original sampling rate is 64Msamp/sec
 Converts a portion of spectrum 32 MHz wide
 Generally we are interested is a narrower portion of the

spectrum requiring a lower sampling rate
 USB cannot handle that high data rate
 Occurs in the FPGA of the USRP

a

f
32MHz

LPF
f

250KHz

Downsample
 divide by 128

f
250KHz

fs = 64Msamp/sec fs = 64Msamp/sec fs = 500Ksamp/sec

64M

500K
= 128

5

13

SDR Receiver with USRP

ADC

FPGA
(Decimator,
MUX, etc.)

USB
Controller PC

I

Q

Daughterboard Motherboard

GNU
Radio

Software

14

USRP -
Motherboard/Daughterboard

15

GNU Radio Software
 Community-based project started in 1998
 GNU Radio application consists of sources (inputs), sinks

(outputs) and transform blocks
 Transform blocks: math, filtering,

modulation/demodulation, coding, etc.
 Sources: USRP, audio input, file input, signal generator,

…
 Sinks: USRP, audio output, file output, FFT, oscilloscope,

…
 Blocks written in C++
 Python scripts used to connect blocks and form application

6

16

Design of a Receiver

 USRP: Set frequency of local oscillator (receive
frequency), gain of amplifier, decimation factor

 GNU Radio application: use Python to specify
and connect blocks that perform demodulation
and decoding

USRP GNU Radio Application

17

Example: 400 - 500 MHz NBFM
Receiver
 Problem: Receive an audio signal (up to 4

KHz) transmitted at 446 MHz using
narrowband FM (NBFM) with a 16 KHz
transmission bandwidth

USRP GNU Radio Application

a

f (MHz)
400 500446

16 KHz

a

f
4KHz

18

Design Procedure

1. Plan the block diagram of system
components

2. Determine block parameters
3. Determine decimation rates
4. Write Python script to specify the blocks

and connect them together

7

19

NBFM Receiver: Block
Diagram/Parameters

a

f (MHz)
400 500446

16 KHz

Daughterboard
fc = 446 MHz

f (MHz)

16 KHz

ADC
64 Msamp/sec

f (MHz)

16 KHz

32-32

FPGA
Dec. factor = ?

f (MHz)

16 KHz

?-?

Channel Filter
cutoff = 8KHz
Dec. factor = ?

f (KHz)

16 KHz

?-? 8-8

FM
Demodulator

Dec. factor = ?

f (KHz)
4-4

Audio

FM

USRP PC

20

Determining the Decimation
Factors

64Msamp/sec 8Ksamp/sec

Total Decimation factor = 8000 = D1D2D3

a

f (MHz)

16 KHz

32-32

FPGA
Dec. factor =

D1

Channel Filter
cutoff = 8KHz
Dec. factor =

D2

FM
Demodulator
Dec. factor =

D3
f (KHz)

4-4

Audio

21

FPGA Decimation Factor, D1

•Total Decimation factor = 8000 = D1D2D3

•Maximize the decimation in FPGA

•Maximum decimation factor in FPGA = 256

•Select D1 = 250 (factor of 8000)

•Output sample rate = 64Ms/s / 250 = 256Ks/s

a

f (MHz)

16 KHz

32-32

FPGA
Dec. factor =

D1

Channel Filter
cutoff = 8KHz
Dec. factor =

D2

FM
Demodulator
Dec. factor =

D3
f (KHz)

4-4

Audio

8

22

Channel Filter Specification

•Maximum frequency = 16 KHz Reduce sample rate to 32 Ks/s

•256Ks/s / 32Ks/s D2 = 8

a

f (MHz)

16 KHz

32-32

FPGA
Dec. factor =

250

Channel Filter
cutoff = 8KHz
Dec. factor =

D2

FM
Demodulator
Dec. factor =

D3
f (KHz)

4-4

Audio

f (KHz)

16 KHz

128-128

64Ms/s

256Ks/s

a

H (dB)

f (KHz)
-60

-16 16-9 9-8 8

-0.1
0

Channel Filter

23

FM Demodulator

•Maximum frequency = 4 KHz Reduce sample rate to 8 Ks/s

•32Ks/s / 8Ks/s D3 = 4

•FM Demodulator block “extracts” audio signal from FM waveform by

operating on I and Q

a

f (MHz)

16 KHz

32-32

FPGA
Dec. factor =

250

Channel Filter
cutoff = 8KHz
Dec. factor = 8

FM
Demodulator
Dec. factor =

D3
f (KHz)

4-4

Audio

f (KHz)

16 KHz

128-128

64Ms/s

256Ks/s

f (KHz)

16 KHz

-16 8-8

FM

16
32Ks/s

24

Complete Application Design

•Total decimation ratio = 250*8*4 = 8000

•Problem: The audio card requires an input sample rate ≥ 44.1 Ks/s

•Solution: Use a Resampler to increase the output sample rate

a

f (MHz)

16 KHz

32-32

FPGA
Dec. factor =

250

Channel Filter
cutoff = 8KHz
Dec. factor = 8

FM
Demodulator
Dec. factor = 4 f (KHz)

4-4

Audio

f (KHz)

16 KHz

128-128

64Ms/s

256Ks/s

f (KHz)

16 KHz

-16 8-8

FM

16
32Ks/s

8Ks/s

9

25

Final Application Design

•Audio Card requires a sample rate ≥ 44.1 Ks/sec. Use 48 Ks/sec.

•Modify FM Demodulator to have a decimation factor of 1 (no change)

•Increase the sample rate to 48 Ks/sec with Resampler (x 3/2)

a

FPGA
Dec. factor =

250

Channel Filter
cutoff = 8KHz
Dec. factor = 8

FM
Demodulator

Dec. factor = 1
48Ks/s

Resampler
mult by 3
div by 2

32Ks/s32Ks/s256Ks/s64Ms/s

26

Implementing the Design
 Create a Python script to specify and

connect the various GNU radio blocks
 Blocks are already written in C++
 USRP parameters are set within Python

script
 # indicates that the line is a comment
 Refer to nbfm.py script

27

Setting the USRP Parameters
 The following code sets the USRP

Parameters:

10

28

Channel Filter Design

 The following code specifies the channel
filter and computes the coefficients

a

H (dB)

f (KHz)
-60

-16 16-9 9-8 8

-0.1
0

29

Channel Filter Creation
 The following code creates the channel filter

using the coefficients computed:

30

FM Demodulator
 The following code creates the FM demodulator.
 The demodulator block also includes a low pass

filter.

11

31

Resampler
 The following code creates the resampler.
 The resampler decimates and/or interpolates the

data to adjust the sample rate.

32

Connecting the Blocks

 The following code connects the blocks:

Or, a single connect statement:

33

Final Thoughts

 Demonstration
 Storing/creating data
 Transmitters
 Installing GNU radio
 Questions
 Where do we go from here?

